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1.  Objectives: 

The main objective of this research was to develop and apply high order accuracy methods 

(Spectral and Finite Differences) to the numerical simulation of flows with discontinuities, in 

complex geometries. The prime target of this effort is the simulations of supersonic reactive 

flows. 

The work entailed research in different areas, the results of these converge in" the codes 

developed. Some of these areas are: 

• The application of spectral methods to shock wave calculations. 

• Development of high order accuracy finite differences ENO and WENO schemes. 

• The development of the Discontinuous Galerkin methods. 

• The resolution of the Gibbs Phenomenon. 

• The developments of high order far field boundary conditions and in particular ab- 

sorbing layers for aero-acoustic problems. 

• General research into the theory of approximations of PDE's. 

The above research yielded results that were applied in different problems relevant to 

US Air-force. As an example we show how to get rid of the oscillations in picture splicing 

(see later). 

2. Summary of Research: 

• Spectral Simulations of Supersonic Reactive Flows 

The culmination of the research effort under this grant is the construction of a multidi- 

mensional spectral code for the simulations of complicated interactions of shock waves 

and reactive flows. A three dimensional supersonic reactive Navier-Stokes Solver using 

Chebyshev collocation methods has been used in the study of mixing in a Scramjet 

engine and addressed the issue of mixing enhancement by shock interactions. The 

code runs on the IBM-SP2 parallel computer and its accuracy and stability have been 



verified. It had been shown that the code provided superior information to low order 

finite difference schemes. 

A new mechanism that might be responsible for breaking up the fuel integrity (enhanc- 

ing the mixing) was identified. The heavier fluids (H20 and 02) are accelerated by the 

shock penetrating into the lighter fluid (H2) and tends to form fingers (related to the 

Richtmyer-Meshkov instability). As the flame jet reaches the other side of the fuel-air 

interface, a roll-up vortex (related to the Kevin-Helmholtz instability) is formed at the 

tip of the flame jet. The flame jet cuts through the hydrogen fuel and makes contact 

with the air on the other side of the fuel-air interface. The vortex at the tip of the 

flame jet lifts and breaks up the fuel-air interface. The motion of the vortex creates 

another flame jet allowing fresh air to penetrate inside and to interact with the fuel. 

This process repeats itself as the new flame jet reaches the other side of the fuel-air 

interface. 

Low order schemes tend to suppress the formation of the vortex due to its inherently 

large numerical dissipation. Therefore, the low order scheme predicts the large scale 

vortical roll-up but not the break-up of the fuel. 

The results of this research were reported in [9] and [10]. 

The filtering techniques developed for this problem has a wide range of applications . 

In fact in [42] a class of filters based upon the numerical solution of high-order elliptic 

problems in Rd which allow for independent determination of order and cut-off wave 

number and which default to classical Fourier-based filters in homogeneous domains 

were applied. These filters are not restricted to applications in tensor-product based 

geometries as is generally the case for Fourier-based filters. The discrete representation 

of the filtered output is constructed from a Krylov space generated in solving a well- 

conditioned system arising from a low-order PDE. 

Spectral Methods for Complex Geometries: 

A major difficulty in the application of high order methods to realistic problems is the 

issue of applying high-order formulations to complex geometries. Often, generating 

a reasonable grid around a complex configuration is the most difficult aspect of the 

solution procedure. 

A multi-domain approach based on breaking the geometry into piecewise smooth "sub- 

domains", using quadrilaterals (hexahedron) in two (three) dimensions was developed. 

Each sub-domain is then discretized with a stable tensor product formulation, and the 

resulting sub-domains are patched together. 



It turns out that the most important ingredient of this method is how to impose inter- 

face boundary conditions. This is especially important for high order schemes as an 

improper imposition of those boundary conditions can lead to reduction of accuracy as 

well as time instabilities. The issue is very subtle as the scheme may still be classically 

stable, but display non-physical growth in time. We have developed a methodology 

for a time stable and accurate imposition of interface boundary conditions. It is valid 

for high-order finite-difference (FD) discretizations and certain spectral formulations. 

Our method is based on a penalty formulation where the penalty parameters are de- 

termined by stability considerations or other properties of the numerical scheme. The 

SAT procedure assures time stability for systems of equations that have a bounded 

energy norm. This is not true in general for other high-order FD methods. Indeed, non- 

penalty approaches often lead to non-physical growth in time for systems of equations, 

even though the discretization operator is stable for the scalar case. The situation is 

even more serious for calculations of flows with shock waves. Currently, there are no 

good methods that can pass shock waves from one sub-domain to the other within 

high order schemes. A progress had been made for this problem, and at least for the 

range of strength of shocks relevant to reactive flows, a procedure was developed. For 

finite difference schemes we had outlined a stable and conservative interface treatment 

of arbitrary spatial accuracy. 

In [3] a method to construct Spectral methods for arbitrary grids was introduced, 

this extends the validity of the Spectral methods to domains of arbitrary shape. In 

[32] an optimal set of points for interpolation in triangles were found and using the 

methodology in [3], an efficient spectral method for triangles was developed in [35]. 

This advance, together with the multi-domain methodology described above extends 

spectral methods to complicated geometries. 

In [24] the optimal strategy of subdivision of domains for spectral calculations of wave 

phenomena was discussed. A formula connecting the optimal number of sub-domains 

with the complexity of the problem (number of waves) and the required accuracy 

was given. In [20] this was extended to parallel computers, taking the number of 

processors and communication time into account. It was shown that, for present day 

multicomputers, the impact of communication overhead does not significantly shift 

the number of domains and the points at each domain from the optimal uni-processor 

values, and that the effects of granularity are more important. A different approach 

to multi-domain methods is considered in [36] where a wavelet optimized adaptive 

multi-domain method had been presented. 



In [28, 29, 33, 34] the penalty method for the multi-domain interface boundary con- 

ditions had been presented for the Navier Stokes equations as well as for general 

hyperbolic equations as the Maxwell's equations for electro-magnetics. 

ENO and Weighted ENO Schemes and Related Topics 

We have performed research on high order finite difference and finite volume ENO 

(essentially non-oscillatory) and WENO (weighted essentially non-oscillatory) schemes. 

These are schemes suitable for the computation of solutions containing both shocks 

and other discontinuities and detailed smooth structures. 

ENO idea is an adaptive interpolation procedure which tries to automatically choose a 

locally smoothest region to perform a high order interpolation, hence avoiding'crossing 

a discontinuity whenever possible. WENO is a modification and improvement of ENO 

schemes. Instead of using only one of the many candidate stencils based on local 

smoothness as in ENO, WENO uses a linear combination of the contribution from all 

candidate stencils, each with suitable nonlinear weight. 

In [46], Shu and Zeng have applied ENO method to the viscoelastic model with fading 

memory. The memory term is treated by introducing new variables and rewrite the 

system by adding more differential equations but without explicit memory terms. The 

appearance of the memory terms regularizes the solution somewhat, and in many cases 

it is still a theoretically open question whether shocks will develop from smooth initial 

data. We have performed theoretical analysis about the linearized system for large 

time, and have applied ENO scheme to study the nonlinear system for both local time 

and large time. The high order accuracy and sharp, non-oscillatory shock transition 

allow us to obtain fine resolution for tens of thousands of time steps, and to study the 

shock interactions after the formation of shocks. 

Application of ENO scheme to the study of shock longitudinal vortex interaction 

problem is carried out by Erlebacher, Hussaini and Shu in [13]. We have studied 

the shock/longitudinal vortex interaction problem in axisymmetric geometry. Linear 

analysis, shock fitting code, and shock capturing ENO are used in different parameter 

range, to study various cases of nearly linear regime, weakly nonlinear regime, and 

strong nonlinear regime. Vortex breakdown as a function of Mach number ranging 

from 1.3 to 10 is studied, extending the range of existing results. For vortex strengths 

above a critical value, a triple point forms on the shock, leading to a Mach disk. This 

leads to a strong recirculating region downstream of the shock. It is found out that a 

secondary shock forms, to provide the necessary deceleration so that the fluid velocity 



can adjust to downstream conditions at the shock.Also on ENO schemes, Harabetian, 

Osher and Shu have investigated a novel Eulerian approach for simulating vortex mo- 

tion using a level set regularization procedure [27]. Our approach uses a decomposition 

of the vorticity of the form f = P{f)r], in which both ip (the level set function) and 

T] (the vorticity strength vector) are smooth. We derive coupled equation.-, for <p and 

7/ which give a regularization of the problem. The regularization is topological and 

is automatically accomplished through the use of numerical schemes whose viscosity 

shrinks to zero with grid size. There is no need for explicit filtering, even when sin- 

gularities appear in the front. The method also has the advantage of automatically 

allowing topological changes such as merging of surfaces. Numerical examples includ- 

ing two and three dimensional vortex sheets, two dimensional vortex dipole sheets and 

point vortices, are given. To our knowledge, this is the first three dimensional vortex 

sheet calculation in which the sheet evolution feeds back to the calculation of the fluid 

velocity. 

In [40], Jiang and Shu have investigated WENO (weighted ENO) schemes, extending 

the ideas of Liu, Osher and Chan. In [40], the weights are chosen so that in smooth 

regions, including at smooth local extrema, they are close to an optimal linear weight 

which gives the highest possible order of accuracy of an upwind-biased linearly stable 

scheme. Near shocks, however, those stencils which contain the shock are assigned 

essentially zero weights. Thus WENO resembles a linear high order upwind biased 

scheme in smooth regions, and resembles ENO near shocks, with a smooth numerical 

flux function. One important advantage of WENO, due to its smoothness of fluxes, 

is that convergence for smooth solutions can be proven. Also, convergence towards 

steady states is easier than ENO. 

Also about high order weighted essentially non-oscillatory (WENO) schemes, jointly 

with Philippe Montarnal, we have used a recently developed energy relaxation theory 

by Coquel and Perthame and high order weighted essentially non-oscillatory (WENO) 

schemes to simulate the Euler equations of real gas [43]. The main idea is an energy 

decomposition under the form e = S\ + e2, where S\ is associated with & simpler 

pressure law (7-law in our case) and the nonlinear deviation £2 is convected with the 

flow. 

A relaxation process is performed for each time step to ensure that the original pressure 

law is satisfied. The necessary characteristic decomposition for the high order WENO 

schemes is performed on the characteristic fields based on the £1 7-law. The algorithm 

only calls for the original pressure law once per grid point per time step, without the 



need to compute its derivatives or any Riemann solvers. Both one and two dimensional 

numerical examples are shown to illustrate the effectiveness of this approach. 

About high order weighted essentially non-oscillatory (WENO) finite volume schemes 

on general triangulations, Hu and Shu [37], [38] constructed third and fourth order 

WENO schemes on two dimensional unstructured meshes (triangles) in the finite vol- 

ume formulation. The third order schemes are based on a combination of linear polyno- 

mials with nonlinear weights, and the fourth order schemes are based on combination 

of quadratic polynomials with nonlinear weights. We have addressed several difficult 

issues associated with high order WENO schemes on unstructured mesh, including the 

choice of linear and nonlinear weights, grouping techniques to avoid negative weights, 

etc. Numerical examples are shown to demonstrate the accuracies and robustness of 

the methods for shock calculations. 

As a related topic, In [26], S. Gottlieb and Shu further explored a class of high or- 

der TVD (total variation diminishing) Runge-Kutta time discretization suitable for 

solving hyperbolic conservation laws with stable spatial discretizations. We illustrate 

with numerical examples that non-TVD but linearly stable Runge-Kutta time dis- 

cretization can generate oscillations even for TVD (total variation diminishing) spatial 

discretization, verifying the claim that TVD Runge-Kutta methods are important for 

such applications. We then explore the issue of optimal TVD Runge-Kutta methods 

for second, third and fourth order, and for low storage Runge-Kutta methods. On 

another related topic, Perthame and Shu [44] have investigated the issue of positivity 

preserving (for density and pressure) high order methods for compressible Euler equa- 

tions of gas dynamics on arbitrary triangulation. A general framework for positivity 

is established and examples within this framework are given. 

• Discontinuous Galerkin Methods 

A quite successful technique for hyperbolic conservation laws is the discontinuous 

Galerkin finite element method. In this method the partial differential equation is 

multiplied by a test function, integrated over a cell, and formally integrated by parts 

to obtain a weak formulation. A solution is sought among discontinuous (across cell 

interface) piecewise polynomials of r-th degree for a (r + l)-th order method. Be- 

cause of the discontinuity at cell interface, this method can accommodate successful 

finite difference methodology (approximate Riemann solvers and limiters) into a finite 

element framework. Theoretical results similar to finite difference methods, such as 

total variation stability for ID and maximum norm stability for 2D and 3D, can be 

proved for this class of discontinuous Galerkin methods of arbitrary order of accuracy 



and for (almost) arbitrary triangulations. An essential difference between this class 

of finite element method and the finite volume method (which can also be defined 

on an arbitrary triangulation) is that the latter has only one independent degree of 

freedom (the cell average) over each cell, while the former has many (for example, it 

has three degrees of freedom for the piecewise linear case in 2D). This fact renders 

the scheme more local (no wide stencil reconstruction is needed to compute the flux 

at cell interface), hence more suitable for parallel computing, and provides a differ- 

ent setting for theoretical justification of stability and convergence of the algorithm. 

In practice, finite element methods can handle complicated geometry and boundary 

conditions more easily. 

In [6], Cockburn and Shu have studied the Local Discontinuous Galerkin methods 

for nonlinear, time-dependent convection-diffusion systems. These methods are an 

extension of the Runge-Kutta Discontinuous Galerkin methods for purely hyperbolic 

systems to convection-diffusion systems and share with those methods their high par- 

allelizability, their high-order formal accuracy, and their easy handling of complicated 

geometries, for convection dominated problems. It is proven that for scalar equa- 

tions, the Local Discontinuous Galerkin methods are L2-stable in the nonlinear case. 

Moreover, in the linear case, it is shown that if polynomials of degree k are used, 

the methods are k-th order accurate for general triangulations; although this order of 

convergence is suboptimal, it is sharp for the LDG methods. Preliminary numerical 

examples displaying the performance of the method are shown. 

In [5], Cockburn and Shu have extended the Runge-Kutta discontinuous Galerkin 

method to multidimensional nonlinear systems of conservation laws. The algorithms 

are described and discussed, including algorithm formulation and practical implemen- 

tation issues such as the numerical fluxes, quadrature rules, degrees of freedom, and 

the slope limiters, both in the triangular and the rectangular element cases. Numeri- 

cal experiments for two dimensional Euler equations of compressible gas dynamics are 

presented that show the effect of the (formal) order of accuracy and the use of triangles 

or rectangles, on the quality of the approximation. 

In [2], Atkins and Shu have discussed a discontinuous Galerkin formulation that avoids 

the use of discrete quadrature formulas. The application is carried out for one and two 

dimensional linear and nonlinear test problems. This approach requires less compu- 

tational time and storage than conventional implementations but preserves the com- 

pactness and robustness inherent in the discontinuous Galerkin method. 

Hu and Shu have presented a discontinuous Galerkin finite element method for solving 



the nonlinear Hamilton-Jacobi equations in [39]. This method is based on the Runge- 

Kutta discontinuous Galerkin finite element method for solving conservation laws. The 

method has the flexibility of treating complicated geometry by using arbitrary trian- 

gulation, can achieve high order accuracy with a local, compact stencil, and are suited 

for efficient parallel implementation. One and two dimensional numerical examples 

are given to illustrate the capability of the method. In [41], Lepsky, Hu and Shu have 

further investigated this method from theoretical and computational points of view. 

Theoretical results on accuracy and stability properties of the method are proven for 

certain cases and related numerical examples are presented. It should be noted that 

for spectral methods, the penalty imposition of boundary conditions is identical with 

the DG method. 

Psuedopack - Numerical Library for Spectral Differentiations: 

A software library using the latest and best algorithms for computing Chebyshev, Leg- 

endre and Fourier derivative for multiple data set with optimal accuracy and efficiency 

was written. This is important since spectral methods based on orthogonal polynomial 

are very sensitive to roundoff error. Special numerical techniques and algorithms were 

employed to increase the efficiency and accuracy of the underlining methods. 

The package has the following features: 

1. Fourier, Chebyshev and Legendre methods on the Gauss-Lobatto points are 

supported. 

2. Matrix-Matrix Multiply Algorithm, Even-Odd Decomposition Algorithm and 

Fast Fourier/Cosine Transform Algorithm are supported for computing the 

derivative of a function. 

3. Compiled on IBM RS/6000, CRAY, SGI, SUN and Generic UNIX machine. 

4. Native fast assembly library call, when available, is used for the library's 

computational kernel. 

5. Special fast algorithms are provided for cases when the function has either 

even or odd symmetry. 

6. Mapping was used to reduce the roundoff error for the Chebyshev and Leg- 

endre differentiation. 

7. Extensive built-in/User definable coordinate transformation routines. 

8. Built-in filtering for smoothing of the function and its derivative. 

9. Unified subroutine call interface allows modification of any parameters with- 

out any change to be made to the subroutine call statement. 

9 



10.  Simple user callable subroutines return the derivatives of a multiple data set. 

Since the user is shielded from any coding errors of the main derivative routines, 

reliability of the solutions is enhanced. It speeds up code development, increases 

productivity and enhances re-usability. 

The package is available at www.cfm.brown.edu/people/wsdon/home.html. An early 

description of the package can be found in [12]. 

Some of the ideas that were incorporated into the design of this software may be found 

in [11] where accuracy enhancement for higher derivatives using Chebyshev collocation 

and a mapping technique is discussed. Also in [7] the accurate computations of high 

order derivative by spectral methods (known to have troubles with roundoff errors) 

were discussed. 

• Acoustics 

Significant progress has been made in the case of plane acoustics embedded in uniform 

flows. First we tried utilizing the well-behaved PML methods from ambient acoustics in 

combination with a layer that slowly decelerates the waves to a zero Mach number prior 

to entering the PML layer, justifying the use of the ambient PML. This is reported in 

[30] While computations confirm the efficiency and simplicity of the proposed scheme it 

cannot be claimed to be a true PML method, as the PML property is obtained only for 

very wide layers. We then applied the methodology based on mathematical method, 

' to develop the first strongly well-posed PML method for the problem of advective 

acoustics. The additional degrees of freedom, required to ensure the PML property, 

are introduced through a number of additional ordinary differential equations, and 

a single partial differential equation. The additional equations are defined so as to 

ensure that the total set of equations support decaying wave solutions, independent of 

frequency and angle of incidence of the incoming wave. This research appears in [l]. 

It is clear that the development of perfectly matched absorbing layers for the equa- 

tions of acoustics is in its infancy. While the recent encouraging results suggest the 

possibility of developing such layers for a variety of flow conditions, many important 

questions remain open. 

The work drew the attention of researchers from Pratt and Whitney who are working 

on the problem of accurate modeling of turbine flutter, where the variable mean flow 

is obtained from a direct solution of the Euler equations and the noise propagation 

problem is traced in this mean field using the linearized equations. A joint work is 

being planned. 

10 



The Resolution of the Gibbs Phenomenon 

The nonuniform convergence of the Fourier series for discontinuous functions, and in 

particular the oscillatory behavior of the finite sum, was already analyzed by Wilbra- 

ham in 1848. This was later named The Gibbs Phenomenon. 

In [22] a review of the Gibbs phenomenon from a different perspective was given. 

In this view, the Gibbs phenomenon deals with the issue of recovering .point values 

of a function from its expansion coefficients. Alternatively it can be viewed as the 

possibility of the recovery of local information from global information. The main 

theme here is not the structure of the Gibbs oscillations but the understanding and 

resolution of the phenomenon in a general setting. 

The purpose of this article was to review the Gibbs phenomenon and to show that 

the knowledge of the expansion coefficients is sufficient for obtaining the point values 

of a piecewise smooth function, with the same order of accuracy as in the smooth 

case. This is done by using the finite expansion series to construct a different, rapidly 

convergent, approximation. 

In [23] a general method of extracting high quality approximations from a slowly con- 

verging ones have been introduced. Conditions to determine which low order approxi- 

mation contains enough information such that a better approximation can be derived 

from it were given. Previous results on the resolution of the Gibbs phenomenon were 

shown to be special cases of this general theory. This work generalizes and extends 

the previous work on the Gibbs phenomenon, and the supersonic reactive codes use 

the theory to overcome the Gibbs oscillation from the shock. 

Another application, motivated by a request from R. Albanese (MPD Brooks AFB) 

of the problem of "gluing" of spliced pictures was considered. A typical situation here 

is that a two dimensional function f(x,y) is to be determined in a domain [a < x < 

b,c < y < d] from the knowledge of its Fourier coefficients at the non-intersecting 

sub-domains [a,- < x < 6,-,c,- < y < d{\. The objective is to approximate the "spliced" 

function in each sub-domain and then to "glue" the approximations together in order 

to recover the original function in the full domain. 

The Fourier partial sum approximation in each sub-domain yields poor results, due to 

the Gibbs phenomenon, as the convergence is slow and spurious oscillations occur at 

the boundaries of each sub-domain. Thus once we "glue" the sub-domain approxima- 

tions back together, the approximation for the function in the full domain will exhibit 

oscillations throughout the entire domain. 

11 



We addressed this problem in one and two dimensions by using techniques developed 

by us to resolve the Gibbs phenomenon. We have shown that we can "cure" the 

problem completely for experimental data. The results of this effort are summarized 

in [18] 

• Parallel Computing 

A fast direct solver has been developed for parallel solution of "coarse grid" 'problems, 

Aux = it;,, such as arise when domain decomposition or multi-grid methods are ap- 

plied to elliptic partial differential equations in d space dimensions. The approach is 

based upon a (quasi-) sparse factorization of the inverse of A. If A is n x n and the 

number of processors is P, our approach requires 0(n7 log2 P) time for communica- 

tion and 0(n1+7/P) time for computation, where 7 = ^-. Results from a 512 node 

Intel Paragon show that our algorithm compares favorably to more commonly used ap- 

proaches which require 0(n\og2 P) time for communication and 0(n1+7) or 0(n2/P) 

time for computation. Moreover, for leading edge multicomputer systems with thou- 

sands of processors and n = P (i.e., communication dominated solves), we expect our 

algorithm to be markedly superior as it achieves substantially reduced message volume 

and arithmetic complexity over competing methods while retaining minimal message 

startup cost. This research is reported in [45]. 

Efficient solution of the Navier-Stokes equations in complex domains is dependent upon 

the availability of fast solvers for sparse linear systems. For unsteady incompressible 

flows, the pressure operator is the leading contributor to stiffness, as the characteristic 

propagation speed is infinite. In the context of operator splitting formulations, it is 

the pressure solve which is the most computationally challenging, despite its elliptic 

origins. 

In [14] several preconditioners for the consistent Li Poisson operator arising in the 

spectral element formulation of the incompressible Navier-Stokes equations were ex- 

amined. A finite element based additive Schwarz preconditioner using overlapping 

sub-domains plus a coarse grid projection operator which is applied directly to the 

pressure on the interior Gauss points, was developed. For large two-dimensional prob- 

lems this approach can yield as much as a five-fold reduction in simulation time over 

previously employed methods based upon deflation. 

As the sound speed is infinite for incompressible flows, computation of the pressure 

constitutes the stiffest component in the time advancement of unsteady simulations. 

For complex geometries, efficient solution is dependent upon the availability of fast 

12 



solvers for sparse linear systems. In [16] a Schwarz preconditions" for the spectral 

element method is developed, using overlapping sub-domains for the pressure. These 

local sub-domain problems are derived from tensor products of one-dimensional finite 

element discretizations and admit use of fast diagonalization methods based upon 

matrix-matrix products. In addition, we use a coarse grid projection operator whose 

solution is computed via a fast parallel direct solver. The combination of overlapping 

Schwarz preconditioning and fast coarse grid solver provides as much as' a fourfold 

reduction in simulation time over previously employed methods based upon deflation 

for parallel architectures. 

• General Research 

It is the nature of research that results in one field can be obtained by research in 

different fields. Our research led to results in two areas not intended in the proposal. 

The Nonlinear Galerkin Method (NGM) was proposed by Temam and was proven to 

be a powerful tool in approximating complicated dissipative evolution equations. 

The method is based on the idea that these equations describe the motion of small scale 

as well as those of large scales. The method suggest the factorization of the equations 

to those describing the small scales and those of the large scale. The equation for the 

small scale are treated differently, since not the small scales themselves are important 

but rather their influence on the large scales. 

It is important for the NGM that it can be cast within the framework of Spectral 

Methods. This had been done in joint works of Gottlieb and Temam. 

In [8] it had been shown that the NGM factorization can be made extremely efficient 

if different time advancing methods are used for the small scales. Several explicit 

methods are suggested for the small scales and the savings are outlined. 

In [21] the super-convergence of the Galerkin methods for hyperbolic initial boundary 

value PDE's has been discussed. It was shown that super-convergence is lost as a 

result of the imposition of boundary conditions. It was also shown that there is no 

way to recover the super-convergence!!! 

In [19] the shape of the sea surface in the steady state solution for a long and narrow 

• basin, as the Gulf of Suez or Baja California, is studied. The study addressed the time- 

dependent problem encountered when the wind in the wind set-down suddenly relaxes 

and the water gushes landward under the influence of the pressure gradient force. This 

is a difficult problem due to a moving singularity associated with the location of the 

intersection point between the sea surface and the shaping bottom. Spectral methods 
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as well as finite difference schemes were used. Both codes yielded the same results, the 

spectral methods with 10 points yielding better results that the MacCormack scheme 

with 3200 points!! The results indicate that no wave breaking occurs. 
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1. David Gottlieb - Ford Foundation Professor. 
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5. Technology Transfers 

• Gottlieb and Don cooperate closely with A. Nejad and Jeff White from WPAFB on 

the problem of enhancing mixing by Shockwaves. The work continues with Dr. T. 

jackson. 

• A two dimensional code for subsonic reactive mixing layer was delivered for Nejad's 

group. The code was written for both Cray and IBM SP2 using MPI. This was a 

cooperative effort between Nejad, Givi (Buffalo) and our group. 

• The code SPARC3D is used in Wright-Patterson Lab. It is an extension of our work 

on fourth order schemes. 

o We have started a joint project with T. Jackson from WPAFB to study recessed cavity 

flameholders. 

• We have close cooperation with J. Shang concerning the construction and application 

of compact high order schemes. 
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We have started a cooperation with Young-Nam Kim from Pratt and Whitney, to 

implement our PML method for acoustics in modeling of turbine flutter. 
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